Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rong-Hua Hu, Xiao-Niu Fang,*
 Yan Sui, Qiu-Yan Luo and Meng-Qiang Zou

JiangXi Province Key Laboratory of Coordination Chemistry, College of Chemistry and Chemical Engineering, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China

Correspondence e-mail: fangxiaoniu@163.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.126$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-2-[2-(2,3-Dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yliminomethyl)phenoxy]acetic acid monohydrate

The title compound, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, has been synthesized by the reaction of 2-(2-formylphenoxy)acetic acid with 4 -aminoantipyrine in ethanol. It comprises a 4 -aminoantipyrine Schiff base and a water molecule. The dihedral angles made by the pyrazoline ring with the substituted and unsubstituted phenyl rings are 14.8 (2) and 58.1 (2) ${ }^{\circ}$, respectively. In the crystal structure, the molecules are held together by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$, intermolecular hydrogen bonds, as well as $\pi-\pi$ stacking interactions.

Comment

4-Aminoantipyrine and its derivatives are important compounds in pharmacology and biochemistry. They are especially used as anti-inflammatory drugs (Hökelek et al., 2002). Aryloxyacetic acids are widely used as herbicides, and some of them have acute toxicity (Zhang \& Chen, 2001). Recently, the crystal structures of two 4-aminoantipyrine Schiff bases with 2-(2-formylphenoxy)acetic acid, (II) (You et al., 2003) and (III) (You et al., 2004), have been reported. We report here the third structure of the 4-aminoantipyrine Schiff base with 2-(2-formylphenoxy)acetic acid, (I).

(I)

Compound (I) crystallizes as a monohydrate, (II) as the nitrate salt and (III) as a methanol solvate. All three compounds adopt an (E)-configuration about the $\mathrm{C}=\mathrm{N}$ bond. The $\mathrm{C}=\mathrm{O}$ bond of the pyrazoline ring and the carboxymethyl group lie on the same side of the molecule in (I) and (III), but on opposite sides in (II). In (I), all the non-H atoms of the 2-(2-formylphenoxy) acetic acid group and atoms C 1 and N 3 are nearly coplanar. The $\mathrm{C}=\mathrm{N}$ bond length in (I) is 1.280 (3) \AA, which is in accord with (III) $[1.2805$ (4) \AA] and shorter than in (II) $[1.304$ (5) \AA] , consistent with the protonation of the imino N atom in (II). The pyrazoline ring in (I) is nearly planar, with a mean deviation from the plane of 0.030 (2) A. Atoms C13, C14 and C15 deviate from the pyrazoline mean plane by 0.13 (3), 0.571 (3) and -0.563 (3) A, respectively. The dihedral

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids.

Figure 2
The packing of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.

Figure 3
Hydrogen bonds in the packing of (I), viewed along the b axis; Hydrogen bonds are shown as dashed lines.
angles between the pyrazoline ring and the substituted and unsubstituted phenyl rings are 14.8 (2) and 58.1 (2) ${ }^{\circ}$, respectively. The crystal structure is stabilized by $\pi-\pi$ stacking interactions (Fig. 2) (the distance of the offset face-to-face $\pi-\pi$ stacking interactions is about $3.8 \AA$, and about $3.6 \AA$ for the edge-to-face interactions), and by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 3).

Experimental

2-(2-Formylphenoxy)acetic acid ($1 \mathrm{mmol}, 0.180 \mathrm{~g}$) and 4 -aminoantipyrine ($1 \mathrm{mmol}, 0.203 \mathrm{~g}$) were dissolved in ethanol (25 ml) and heated for 2 h under reflux. When the solution was cooled, a yellow solid was precipitated with a yield of 84% (m.p. $466.2-466.9 \mathrm{~K}$). The crude solid was washed with ethanol and light petroleum, and then dissolved in 95% ethanol. After keeping the resulting solution in air for a week, single crystals suitable for X-ray diffraction analysis precipitated.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
Z=8
$$

$M_{r}=383.40$
Monoclinic, $C 2 / c$
$a=18.0213(15) \AA$
$b=6.8755$ (6) \AA
$c=30.352$ (3) \AA
$\beta=94.518$ (2) ${ }^{\circ}$
$V=3749.1(6) \AA^{3}$

$$
D_{x}=1.359 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, yellow
$0.20 \times 0.14 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX-II area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.127$
$S=1.01$
3231 reflections
265 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: } A P E X 2 \\
& \text { Extinction coefficient: } 0.0009(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C10	$1.238(3)$	$\mathrm{N} 2-\mathrm{C} 14$	$1.457(3)$
N1-N2	$1.403(3)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.280(3)$
N1-C10	$1.405(3)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.395(3)$
N1-C15	$1.432(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.468(4)$
N2-C12	$1.364(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.370(4)$
N2-N1-C10	$109.0(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 14$	$116.5(2)$
N2-N1-C15	$119.4(2)$	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 11$	$119.9(3)$
C10-N1-C15	$121.4(2)$	$\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$	$122.0(3)$
C12-N2-N1	$107.3(2)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 1$	$122.1(3)$
$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 14$	$124.5(3)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$132.6(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4A $\cdots \mathrm{O}^{\text {i }}$	0.82	1.94	$2.688(4)$	151
O5-H5B \cdots O1	$0.89(2)$	$1.96(3)$	$2.831(4)$	$166(4)$
O5-H5A \cdots O3	$0.88(2)$	$1.95(3)$	$2.823(4)$	$173(4)$
C4-H4 \cdots O $^{\text {ii }}$	0.93	2.48	$3.383(4)$	163
C13-H13C \cdots O1 $^{\text {iii }}$	0.96	2.51	$3.459(4)$	172

Symmetry codes: (i) $-x,-y+2,-z+2$; (ii) $-x+\frac{1}{2},-y+\frac{5}{2},-z+2$; (iii) $x, y-1, z$.

H atoms attached to water O atoms were found in difference density maps and refined with restraints to make plausible $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}=0.82(2) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.45(2) \AA$], whilst maintaining the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle of 107.5°. All other H atoms were positioned in idealized locations and refined as riding on their carrier atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) $\AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ (carboxyl), and $U_{\text {iso }}(\mathrm{H})=$
$1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic and methylene H atoms and $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for other H atoms.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: $A P E X 2$; program(s) used to refine structure: $A P E X 2$; molecular graphics: $A P E X 2$; software used to prepare material for publication: APEX2.

We gratefully acknowledge financial support from the Natural Science Foundation of JiangXi Province (No. 0620029) and the Science and Technology Bureau of Ji'an City (grant No. 200528).

References

Bruker (2004). APEX2 (Version 1.22) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Hökelek, T., Kilic, Z., Isiklan, M. \& Hayvali, M. (2002). Anal. Sci. 18, 215-216.
You, Z.-L., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. E60, o801-o803.
You, Z.-L., Zhu, H.-L., Liu, W.-S. \& Tan, M.-Y. (2003). Acta Cryst. E59, o1920o1922.
Zhang, L.-X. \& Chen, Y.-W. (2001). J. Instrum. Anal. 20, 35-38.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

